Maximum Likelihood Estimation of Latent Affine Processes
نویسندگان
چکیده
منابع مشابه
Maximum likelihood estimation of determinantal point processes
Determinantal point processes (DPPs) have wide-ranging applications in machine learning, where they are used to enforce the notion of diversity in subset selection problems. Many estimators have been proposed, but surprisingly the basic properties of the maximum likelihood estimator (MLE) have received little attention. The difficulty is that it is a non-concave maximization problem, and such f...
متن کاملMaximum Likelihood Estimation of Hidden Markov Processes
We consider the process dYt = utdt + dWt; where u is a process not necessarily adapted to FY (the ...ltration generated by the process Y ) and W is a Brownian Motion. We obtain a general representation for the likelihood ratio of the law of the Y process relative to Brownian measure. This representation involves only one basic ...lter (expectation of u conditional on observed process Y ): This ...
متن کاملParameter Estimation via Gaussian Processes and Maximum Likelihood Estimation
Computer models usually have a variety of parameters that can (and need to) be tuned so that the model better reflects reality. This problem is called calibration and is an inverse problem. We assume that we have a set of observed responses to given inputs in a physical system and a computer model that depends on parameters that models the physical system being studied. It is often the case tha...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملParticle methods for maximum likelihood estimation in latent variable models
Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Review of Financial Studies
سال: 2006
ISSN: 0893-9454,1465-7368
DOI: 10.1093/rfs/hhj022